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Abstract. The theory of spin diffusion is extended to the case of nuclear dipolar order in solids
containing paramagnetic impurities. We show that at the beginning of the relaxation process
the relaxation function of the dipolar order is non-exponential, due to the direct interaction with
paramagnetic impurities, and proceeds to become an exponential function of time, when spin
diffusion of the dipolar order takes place. Using experimental data on these two relaxation regimes
in CaF2 doped with Mn2+, the diffusion coefficient and the radius of the diffusion barrier were
estimated.

1. Introduction

The dipole–dipole interaction (DDI) plays the dominant role in the spin diffusion and spin–
lattice relaxation in solids containing paramagnetic impurities (PIs) [1,2]. The DDIs between
nuclear spinsI and PI spinsS lead to a direct spin–lattice relaxation of the nuclear spin system.
Due to the inverse-sixth-power dependence on the distance between the nuclei and the PI, the
local nuclear magnetizations reach their equilibrium values at a faster rate near the PIs [1–3].
Therefore the nuclear magnetization will be a function of the position. This induces the spatial
diffusion of the nuclear Zeeman energy by flip-flop transitions due to DDIs between nuclear
spins. For the diffusion coefficient,D, values in the interval 10−12–10−13 cm s−1 for inorganic
solids and 10−14–10−16 cm s−1 for organic solids are obtained [4].

The role of the DDI between PI spins in nuclear spin diffusion has been considered
in detail [4, 5]. It was shown that the relaxation process is described by the sum of two
exponentials. As regards the DDI between nuclear spins, in most theories only the transfer
function of the Zeeman energy was considered [1–3]. Only a few papers tried to take into
account other functions of the spin–spin energy [6–8]. For example, the theory was extended
to include a diffusion of the spin–spin energy in an inhomogeneous magnetic field [6] and an
exchange energy in3He [7], and the transport of spin–spin energy was calculated numerically
for classical gyromagnets, coupled by truncated dipole–dipole and nearest-neighbour exchange
interactions [8].

However, as is well known [9–11], the DDI between nuclear spins plays an important
part in the spin thermodynamics in solids. On the one hand, the secular parts of the nuclear
DDIs form an independent energy reservoir [9–12] with its own spin temperature, which can
be different from the spin temperature of the Zeeman reservoir, and, on the other hand, the
nuclear DDIs turn on the relaxation processes which bring a nuclear spin system into a thermal
equilibrium state [10].

Recently a theory for the spin–lattice relaxation of the nuclear dipolar order via PIs has
been developed [13] without taking into account any diffusion processes. Nuclear dipolar
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order is characterized by a state with nuclear spins oriented along an internal local field [10]
caused by DDIs. Here we discuss the phenomena of spin diffusion of dipolar order of the
nuclear spins due to their DDI in solids containing PIs, and the spin-diffusion coefficient of
the dipolar order will be obtained from experimental data.

2. Theory

The pure state of the spin system in the form of dipolar order can be reached by using the
method of adiabatic demagnetization in a rotating frame (ADRF) [10, 14] or by applying a
pair of phase-shifted radio-freqency pulses (the JB method) [15]. The Hamiltonian of the spin
system in the frame rotating with the Larmor frequency has the following form:

H = Hd +HIS +HS (1)

whereHd is secular part of the nuclear DDI Hamiltonian:

Hd =
∑
µ6=η
Hµη =

∑
µ6=η

Gµη

[
I zµI

z
η −

1

4
(I+
µI
−
η + I−µ I

+
η )

]
(2)

where

Gµη = γ 2
I r
−3
µη (1− 3 cos2 θµη). (3)

γI is the gyromagnetic ratio of the nuclei, andrµη andθµη are the spherical coordinates of the
vectorErµη connecting theµth andηth nuclei in a coordinate system with thez-axis along the
external magnetic field direction. In the impurity–nuclear DDI Hamiltonian,HIS , we retain
only the term which gives the dominant contribution to the relaxation process:

HIS =
∑
µj

Fµj I
z
µS

z
j (4)

whereFµj = γIγSr−3
µj (1− 3 cos2 θµj ), γS is the gyromagnetic ratio of the PIs, andrµj is the

distance between the nuclear and PI spins. Here the Greek indices indicate the position of the
nuclei and the italic ones those of the impurities.HS describes the impurity spin system.

Introducing a nuclear spin-density operator
EI (Er) =

∑
µ

δ(Er − Erµ) EIµ (5)

the density of the nuclear dipolar Hamiltonian can be written down in the form

Hd(Er) =
∫

dEr ′
∑
µ6=η

δ(Er − Erµ)δ(Er ′ − Erη)Hµη. (6)

To obtain the equation describing the spin diffusion and spin–lattice relaxation of the
dipolar order we will use the method of non-equilibrium state operators [16], which has been
applied to obtain the diffusion equation in the case of the Zeeman-order spin diffusion [17].
Assuming that after the transformation of the Zeeman order to a dipolar one a quasi-equilibrium
state is established [10,14], the density matrix can be written as

ρ = Z−1 exp

{
−
∫

dEr βd(Er, t)Hd(Er)− βSHS

+
∫ 0

−∞
dt eεt

[∫
dEr βd(Er, t)∂Hd(Er)

∂t
+ βS

∂HS
∂t

]}
(7)

whereZ = Tr exp{· · ·} and the transition to the limitε → +0 should be made after the
calculation of the integral.βd(Er, t) is the local inverse temperature of the nuclear dipole
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reservoir. In equation (7) all operators are taken in the Heisenberg representation. Taking into
account that the heat capacity of the PI

PS = − δ

δβS
〈HS〉

is large in comparison with the nuclear spin heat capacity (PS/PI ∼ γ 2
S /γ

2
I ∼ 106) and that

the spin–lattice relaxation time of the PI,T1S , is very short (T1S/T1I ∼ 10−3) [4], a case
which is experimentally realizable, it is reasonable to consider only the relaxation process
with a constant inverse spin temperature of the PI,βS , equal to that of the lattice:βS = βL.
Therefore, the PI reservoir is in thermal equilibrium with the lattice andβS is independent of
the position.

Using the commutation rules relating the components of the spin-density operator (5), we
can obtain the following equations in the form of localized laws of conservation of the spin
energy densities:

∂Hd(Er)
∂t

+ div Ejd(Er) = KdS(Er) (8)

∂HS
∂t
= −

∫
dEr KdS(Er). (9)

The last equation is the result of the energy conservation law. In equation (8)Ejd(Er) is the
operator of the flux of the nuclear dipolar energy:

Ejd(Er) = − i

4

∑
µ6=η 6=ν

δ(Er − Erµ)(Erµ − Erν)GµηGην

{
I zν [I+

µI
−
η − I−µ I+

η ] + I zµ[I+
η I
−
ν − I−η I+

ν ]

+
1

4
I zη [I−ν I

+
µ − I+

ν I
−
µ + I+

µI
−
ν − I−µ I+

ν ]

}
(10)

andKdS(Er) in equation (8) is the change of the nuclear dipolar energy density due to the
interaction with the PI:

KdS(Er) = − i

4

∑
j,µ6=η

δ(Er − Erµ)Szj (Fµj − Fηj )Gµη(I
+
µI
−
η − I−µ I+

η ). (11)

It is not obvious thatEjd(Er) 6= 0, because∂ Ejd/∂Er is proportional to the commutator [Hd ,Hd(Er)]
and at first sight it appears that this has to be equal to zero. But in fact only the integral of the
commutator over a sample is equal to zero:∫

dEr [Hd ,Hd(Er)] = 0

as it has to be according to the energy conservation law. Due to the fact that the dipolar term
is bilinear with respect to the spin operators, the local dipolar energy from a position given by
vectorErµ can be transferred to the positionErν by using a direct method (the last two terms in
the curly brackets in equation (10)) and by means of a spin at positionErη (the first two terms
in curly brackets in equation (10)). The changes of the local dipolar energy of theµth nuclear
spin at positionrµ via interaction with a PI at the positionErj can be made direct (the termFµj )
or indirect via a nuclear spin at positionErη (the termFηj ).

In the high-temperature approximation, we can write the density matrix (7) in the following
form [16]:

ρ =
{

1−
∫ 1

0
dλ [B(t + iλ)− 〈B(t + iλ)〉]

}
ρeq (12)
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where the thermodynamic average〈· · ·〉 corresponds to an averaging with the quasi-equilibrium
operatorρeq = e−A/Tr e−A, where

A =
∫

dEr βd(Er, t)Hd(Er) + βLHS (13)

B(t + iλ) =
∫ 0

−∞
dt eεt

∫
dEr {∇βd(Er, t) · [e−λA Ejd(Er, t)eλA]

+ [βd(Er, t)− βL]e−λAKdS(Er, t)eλA}. (14)

By using equations (10) and (12)–(14) and taking into account that for a cubic single-
crystal sample, the diffusion coefficientD—which in the general case of non-cubic symmetry
is a symmetrical tensor of second rank [4]—reduces to a scalar quantity, the diffusion equation
can be obtained:

∂βd(Er, t)
∂t

= D1βd(Er, t)−W(Er)
[
βd(Er, t)− βL

]
(15)

with the boundary condition

∇βd(r)
∣∣
r=l = 0 (16)

where l ∼ (γS/γI )
1/3r0 is the radius of the diffusion barrier [1, 2] inside which the spin-

diffusion process is quenched;r0 is the distance between neighbouring nuclei. The first term
on the right-hand side of equation (15) describes the variation (over time) of the dipolar order
due to the spin diffusion with the diffusion coefficient

D =
(

3

4

)2 ∫ ∞
−∞

dt
∑
µ6=η 6=ν

δ(Er − Erµ)(Er − Erν)(Erµ − Erν)〈I zν I zν (t)I+
µI
−
µ (t)I

−
η I

+
η (t)〉

× (GµηGην)
2/ 〈HdHd(Er)〉 (17)

and the second term gives the variation ofβd(Er) due to the relaxation with density of the
transition probability per unit time,W(Er), which is given for a cubic crystal by

W(Er) =
∑
µj

δ(Er − Erµ)
[
Aµj +

∑
η

Bµηj

]
(18)

where

Aµj = 1

2π
F 2
µj

∫ ∞
−∞

dt
∑
η

f jµη(t) (19)

Bµηj = 1

2π
F 2
ηj

∫ ∞
−∞

dt f jµη(t) (20)

f jµη(t) =
1

4
δ(Er − Erµ)〈I+

µI
−
µ (t)I

−
η I

+
η (t)S

z
jS

z
j (t)〉G2

µη/〈HdHd(Er)〉. (21)

In equation (18) the first term,Aµj , describes the direct interaction of a given nuclear spin with
the PI and the second,

∑
η Bµηj , corresponds to indirect interaction via neighbouring nuclear

spins. It should be noted that the second term in equation (18) has no diffusional character.

3. Results and discussion

Immediately after a disturbance of the nuclear spin system, there is no gradient ofβd(Er, 0)
and diffusion cannot be of importance at the start of the relaxation process [18]. To describe
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the relaxation we can use equation (15) without the first term; this is the so-called direct-
relaxation regime [19]. Since the local inverse temperature,βd(Er, t), is distributed throughout
the sample and depends on position, in order to obtain a quantity which is connected with the
experimentally observable component of the magnetization, a suitable averaging procedure
must be performed [13]. After averaging, the normalized relaxation function

R(t) =
〈
βd(Er, t)− βd(Er,∞)
βd(Er, 0)− βd(Er,∞)

〉
takes the form [13]

R(t) = exp

[
−
(
t

T A1d

)α]
exp

[
−
(
t

T B1d

)]
(22)

whereT A1d ∼ C
−1/α
p andT B1d are the spin–lattice relaxation times due to direct and indirect

interaction with the PI;Cp is the impurity concentration. For a homogeneous distribution of
paramagnetic centres and nuclear spins,α = Q/6 whereQ is the sample dimensionality; for
an inhomogeneous distribution, the sample is divided intoq-dimensional subsystems, each
containing one paramagnetic centre, yieldingα = (Q + q)/6. In the two limiting cases, when
the radius of the diffusion barrier,l, is large or small enough relative to size of the subsystems,
only one exponent from equation (22) plays an important role [13]. This result coincides
with experimental data for CaF2 doped with 0.8× 10−3 wt% of Mn2+, where non-exponential
decay of the dipolar signal withα = 0.83 has been observed [20]. In this case, as a result
of the adiabatic demagnetization, the local magnetization is equal to zero and it is reasonable
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Figure 1. The log of the19F dipolar signal for CaF2 doped with Mn2+ as a function oft0.83 for
the diffusion-vanishing regime of relaxation: (a) solid circles: JB method; (b) open circles: ADRF
method. The solid lines show apparent fits to expression (23).
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to assume that the subsystem dimensionality is equal to 2 with the plane perpendicular to
the external magnetic field in accordance with the symmetry of the system. Soq = 2 and,
according to the structure of CaF2, Q = 3. For an inhomogeneous distribution we have
α = 5

6 ' 0.83. Fitting the experimental data [20] yields a good agreement withT A1d = 123 ms
for the JB method;T A1d = 75 ms for the ADRF at the beginning of the relaxation process
(figure 1). This means that only the first exponent in equation (22) plays an important role,
and using this fact we can neglect the second term in equation (18), soW ∼ A/r6, where
A/r6 = 〈Aµj 〉θµj is an average over the spherical coordinates of the vectorErµj . Another
independent check of the results obtained is the dependence of the relaxation time on the
impurity concentration. In accordance with 1/α = 1.2, we haveT A1d ∼ C−1.2

p . Exactly
this dependence on the impurity concentration of the relaxation time has been found in the
experiment [20]. The difference between the relaxation timesT A1d found after using JB and
ADRF preparation methods can be explained by taking into account the fact that the ADRF
method is isentropic, whereas the JB method is not [10]. Therefore the dipolar ordering states
of the spin system achieved by these two preparation methods have some differences [20].

The direct-relaxation regime of the dipolar order should be valid for a short time,
t � A1/2D−3/2, after a disturbance of the nuclear spin system [18]. Then it is expected
thatβd starts as a non-exponential function that is time dependent:

R(t) ∼ exp

[
−
(
t

T A1d

)α]
(23)

and proceeds asymptotically to become an exponential function of time, the so-called diffusion-
limited relaxation regime [19]. In this case we have to take into account also the first term in
equation (15). One of the ways to solve this equation and extract the time dependence is by
introducing the eigenfunctionsϕn(Er) of the operatorD1 − W(Er) [21]. Using a spherical
symmetry approximation, the general solution of the equation (15) can be written as an
expansion in terms of the orthogonal functionsϕn(Er):

βd(r, t) =
∫

dr1
∑
n

exp(−k2
nDt)ϕn(r)ϕ̃

?
n(r1) (24)

where the functionsϕn(r) satisfy the equation

1ϕn(r)− (W(r)/D)ϕn(r) = −k2
nϕn(r) (25)

with the boundary condition

∇ϕn(r)
∣∣
r=l = 0. (26)

Equation (25) is well known in the theory of scattering as a low-energy limit [22], and has
an asymptotic solution forr � l: ϕn(r) ∼ sin(knr + δn)/r, whereδn ∼ knξ is the phase
shift andξ is the scattering length [22]. According to the spherical symmetry, only s-wave
scattering withn = 0 is taken into account. Using the boundary condition (26) and the fact
thatW ∼ A/r6 for (A/D)1/4� r � 1/k0, we obtain [22]

ξ =
(
A

D

)1/4
0(3/4)

20(5/4)
. (27)

Using the last result, for the long-time approximation,t � l2/D, we obtain the normalized
relaxation function for the diffusion-limited regime:

R(t) = exp(−t/T D1d ) (28)

where

T D1d =
1

4πCpDξ
.
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So we obtain an expression that describes the exponential time dependence ofβd(t) (figure 2)
with the relaxation time

T D1d =
[
2πCpD

3/4A1/40(3/4)

0(5/4)

]−1

(29)

which is inversely dependent on the impurity concentration and has the same form as for the
Zeeman spin-diffusion case [4].
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Figure 2. The log of the19F dipolar signal for CaF2 doped with Mn2+ as a function oft for
the diffusion-limited regime of relaxation: (a) solid circles: JB method; (b) open circles: ADRF
method. The solid lines show apparent fits to expression (28).

We do not evaluate the relaxation timesT A1d andT D1d . Instead we will obtain these quantities
from experimental data [20] and then we will use them to calculate the diffusion coefficient
of the dipolar order,D. Fitting the experimental data [20] yields a good agreement with
T D1d = 696 ms for the JB method andT D1d = 683 ms for the ADRF obtained for the second part
of the relaxation process. At times longer than 50 ms the direct-relaxation regime is changed
to a diffusion-limited one for both JB and ADRF preparation methods. Using this information,
the interaction constant,A, and the radius of the dipolar diffusion barrier,l, can be estimated

Table 1. Diffusion coefficients of dipolar order for Mn2+-doped CaF2 crystal.

Method T (K) Cp (cm−3) [20] T A1d (ms) T D1d (ms) D (cm s−1)

JB 4.2 1.2× 1019 123 696 1.8× 10−13

ADRF 4.2 1.2× 1019 75 683 1.5× 10−13
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to beA ∼ 10−41 cm6 s−1 andl ∼ 8.6× 10−8 cm. The values for the diffusion coefficient,D,
for both preparation methods, are given in table 1.

4. Conclusions

We found that the spin-diffusion process of the dipolar order takes place in solids containing
paramagnetic impurities. As mentioned above, at the beginning of the relaxation process
the direct-relaxation regime is realized with a non-exponential time dependence andT A1d is
inversely proportional to the 6/(Q+q) power ofCp. Then the relaxation regime is changed to
a diffusion-limited one in accordance withT A1d � T D1d . The latter type of relaxation behaviour
of the dipolar order is seen in the experiments [20]. Using experimental results [20] for these
two regimes, we can estimate the diffusion coefficient of the nuclear dipolar order in CaF2

doped with paramagnetic Mn2+; we obtain, for typical values of the impurity concentration
Cp ∼ 1019 cm−3, the diffusion coefficient of the dipolar order asD ∼ 10−13 cm s−1 and the
radius of the diffusion barrier asl ∼ 10−7 cm for both JB and ADRF preparation methods; these
are close to the values for the cases of Zeeman-energy spin diffusion for inorganic solids [4,23]
and of a spin–spin diffusion in an inhomogeneous magnetic field [6].
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